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Chapter 5 
 

Fundamentals of Applied Sampling 
 

Thomas Piazza 

 

 

5.1  The Basic Idea of Sampling 
 

 Survey sampling is really quite remarkable.   In research we often want to know 

certain characteristics of a large population, but we are almost never able to do a 

complete census of it.  So we draw a sample—a subset of the population—and conduct 

research on that relatively small subset.   Then we generalize the results, with an 

allowance for sampling error, to the entire population from which the sample was 

selected.  How can this be justified? 

 The capacity to generalize sample results to an entire population is not inherent in 

just any sample.   If we interview people in a “convenience” sample—those passing by 

on the street, for example—we cannot be confident that a census of the population would 

yield similar results.   To have confidence in generalizing sample results to the whole 

population requires a “probability sample” of the population.   This chapter presents a 

relatively non-technical explanation of how to draw a probability sample. 

 

Key Principles of Probability Sampling 

 When planning to draw a sample, we must do several basic things: 

1. Define carefully the population to be surveyed.   Do we want to generalize the 

sample result to a particular city?  Or to an entire nation?  Or to members of a 

professional group or some other organization?  It is important to be clear about 

our intentions.  Often it may not be realistic to attempt to select a survey sample 

from the whole population we ideally would like to study.  In that case it is useful 

to distinguish between the entire population of interest (e.g., all adults in the U.S.) 

and the population we will actually attempt to survey (e.g., adults living in 

households in the continental U.S., with a landline telephone in the home).  The 

entire population of interest is often referred to as the “target population,” and the 
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more limited population actually to be surveyed is often referred to as the “survey 

population.”
1
 

2. Determine how to access the survey population (the sampling frame).  A well-

defined population is only the starting point.  To draw a sample from it, we need 

to define a “sampling frame” that makes that population concrete.  Without a 

good frame, we cannot select a good sample.   If some persons or organizations in 

the survey population are not in the frame, they cannot be selected.   Assembling 

a sampling frame is often the most difficult part of sampling.  For example, the 

survey population may be physicians in a certain state.   This may seem well-

defined, but how will we reach them?  Is there a list or directory available to us, 

perhaps from some medical association?  How complete is it?  

3. Draw a sample by some random process.   We must use a random sampling 

method, in order to obtain results that represent the survey population within a 

calculable margin of error.  Selecting a few convenient persons or organizations 

can be useful in qualitative research like focus groups, in-depth interviews, or 

preliminary studies for pre-testing questionnaires, but it cannot serve as the basis 

for estimating characteristics of the population.   Only random sampling allows 

generalization of sample results to the whole population and construction of 

confidence intervals around each result. 

4. Know the probability (at least in relative terms) of selecting each element of 

the population into the sample.   Some random sampling schemes include 

certain population elements (e.g., persons or organizations) at a higher rate than 

others.  For example, we might select 5% of the population in one region but only 

1% in other regions. Knowing the relative probabilities of selection for different 

elements allows the construction of weights that enable us to analyze all parts of a 

sample together.   

 

 The remainder of this chapter elaborates on and illustrates these principles of 

probability sampling.  The next two sections cover basic methods for sampling at random 

                                                 
1
 This is the terminology introduced by Kish (1965, p. 7) and used by Groves et al. (2009, pp.69-70) and by 

Kalton (1983, pp. 6-7).  This terminology is also used, in a slightly more complicated way, by Frankel (this 
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from a sampling frame. We proceed to more complicated designs in the sections that 

follow. 

 

5.2  The Sampling Frame 

 
 Developing the frame is the crucial first step in designing a sample.  Care must be 

exercised in constructing the frame and understanding its limitations.  We will refer to the 

frame as a list, which is the simplest type of frame.  However, a list may not always be 

available, and the frame may instead be a procedure (such as the generation of random 

telephone numbers) that allows us to access the members of the survey population.  But 

the same principles apply to every type of frame. 

 

Assemble or identify the list from which the sample will be drawn 

 Once we have defined the survey population – that is, the persons or organizations 

we want to survey—how do we find them?  Is there a good list?  Or one that is “good 

enough”?  Lists are rarely perfect:  common problems are omissions, duplications, and 

inclusion of ineligible elements.   

 Sometimes information on population elements is found in more than one file, 

and we must construct a comprehensive list before we can proceed.  In drawing a sample 

of schools, for instance, information on the geographic location of the schools might be in 

one file, and that on academic performance scores in another.  In principle, a sampling 

frame would simply merge the two files.  In practice this may be complicated, if for 

example the two files use different school identification codes, requiring a “crosswalk” 

file linking the corresponding codes for a given school in the different files. 

 

Dealing with incomplete lists 

 An incomplete list leads to non-coverage error – that is, a sample that does not 

cover the whole survey population.   If the proportion of population elements missing 

from the list is small, perhaps 5% or less, we might not worry.  Sampling from such a list 

                                                                                                                                                 
volume). 
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could bias
2
 results only slightly.  Problems arise when the proportion missing is quite 

large. 

If an available list is incomplete, it is sometimes possible to improve it by 

obtaining more information.  Perhaps a second list can be combined with the initial one.  

If resources to improve the list are not available, and if it is our only practical alternative, 

we might redefine the survey population to fit the available list.  Suppose we initially 

hoped to draw a sample of all physicians in a state, but only have access to a list of those 

in the medical association.  That frame omits those physicians who are not members of 

the association.  If we cannot add non-members to that frame, we should make it clear 

that our survey population includes only those physicians who are members of the 

medical association.  We might justify making inferences from such a sample to the 

entire population of physicians (the target population) by arguing that non-member 

physicians are not very different from those on the list in regard to the variables to be 

measured.  But unless we have data to back that up, such arguments are conjectures 

resting on substantive grounds – not statistical ones.  

  

Duplicates on lists 

 Ideally a list includes every member of the survey population – but only once.  

Some elements on a list may be duplicates, especially if a list was compiled from 

different sources.  If persons or organizations appear on a list more than once, they could 

be selected more than once.  Of course, if we select the same element twice, we will 

eventually notice and adjust for that.  The more serious problem arises if we do not 

realize that an element selected only once had duplicate entries on the frame.  An element 

that appears twice on a list has double the chance of being sampled compared to an 

element appearing only once, so unrecognized duplication could bias the results.  Such 

differences in selection probabilities should be either eliminated or somehow taken into 

account (usually by weighting) when calculating statistics that will be generalized to the 

survey population.   

                                                 
2
 The term “bias” refers to an error in our results that is not due to chance.  It is due to some defect in our 

sampling frame or our procedures. 
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The most straightforward approach is to eliminate duplicate listings from a frame 

before drawing a sample.  Lists available as computer files can be sorted on any field that 

uniquely identifies elements—such as a person’s or organization’s name, address, 

telephone number, or identification code.   Duplicate records should sort together, 

making it easier to identify and eliminate them.  Some duplicates will not be so easily 

isolated and eliminated, though, possibly because of differences in spelling, or 

recordkeeping errors.    

 Alternately, we can check for duplicates after elements are selected.  A simple 

rule is to accept an element into the sample only when its first listing on the frame is 

selected (Kish, 1965, p. 58).    This requires that we verify that every selected element is 

a first listing, by examining the elements that precede the position of that selection on the 

list.  Selections of second or later listings are treated as ineligible entries (discussed next).  

This procedure can be extended to cover multiple lists.  We predefine a certain ordering 

of the lists, and after selecting an element we check to see that it was not listed earlier on 

the current list or on the list(s) preceding the one from which the selection was made.   

This procedure requires that we check only the selected elements for duplication (rather 

than all elements on the frame), and that we check only the part of the list(s) preceding 

each selection. 

 

Ineligible elements 

 Ineligible elements on a list present problems opposite to those posed by an 

incomplete list.  Ineligible entries are elements that are outside the defined survey 

population.  For example, a list of schools may contain both grade schools and high 

schools, but the survey population may consist only of high schools.  Lists are often out 

of date, so they can contain ineligible elements—like schools that have closed, or persons 

who have died.   

 It is best to delete ineligible elements that do not fit study criteria, if they are 

easily identified.  Nevertheless, ineligible records remaining on the frame do not pose 

major problems.  If a selected record is determined to be ineligible, we simply discard it.  

One should not compensate by, for example, selecting the element on the frame that 

follows an ineligible element.  Such a rule could bias the sample results, because 



6 

 

elements immediately following ineligible ones would have higher selection probabilities 

– their own probability plus that of the immediately preceding ineligible element(s).   

 When a list includes ineligible entries, we must ensure that the sample includes 

enough usable selections by anticipating the ineligibility rate and sampling additional 

elements.  If the target sample size is 500, for example, and we expect that 20% of the 

elements on the frame are ineligible, selecting 500 elements would leave only 400 usable 

selections.  To end up with 500, we should select 500/(1-0.20)=625.  If we anticipate 

further that only 70% of the eligible selected elements (persons or organizations) will 

agree to participate in the survey, we should increase the sample size even further to 

625/0.70 = 893. 

 Indeed, once we decide on a certain target number of completed interviews, it is 

usually necessary to make many more than that number of selections, to compensate for 

anticipated losses due to ineligibles, duplicates, refusals, language problems, and other 

issues.   Such adjustments in sample selection plans are an important part of sampling 

work. 

 

5.3  Basic Methods for Random Sampling from Lists 

 

Selecting persons, organizations or other elements from a list is the simplest and 

most straightforward sampling method. It illustrates the main points in sampling and 

provides groundwork for more complex methods.  Variations on the basic theme exist, 

however, even for this simplest sample selection method. 

 Once the frame has been assembled, we can draw one or more samples.  Three 

commonly used sampling methods are simple random sampling, systematic sampling, 

and selection with probability proportional to size.  

 

5.3.1   Simple Random Sampling  

 Simple random sampling (SRS) is the standard basic method of sampling.  With 

SRS, each element on the list has the same selection probability, and selections are made 

independently of one another.  SRS serves as a baseline against which other methods are 

evaluated. 
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 Selection can be carried out either “with replacement” or “without replacement.”  

To understand the terminology, think of selecting little numbered balls from a big jar.   If 

we put a ball back in the jar after selecting it, we could select the same ball more than 

once.   If we do not replace selected balls, we cannot select the same ball more than once.   

A valid random sample can be drawn either way.   The statistical theory of random 

sampling is a little simpler if sampling is done with replacement.  In practice, however, 

we almost always prefer not to select the same person or organization more than once, 

and therefore we usually sample without replacement.   

 Figure 5.1 illustrates a very simple procedure for drawing simple random 

samples.  Suppose we would like to select 2 of the 10 elements in Figure 5.1 at random.   

We could generate some independent random numbers between 1 and 10 using a 

spreadsheet, a computer program, or a table of random numbers.  In this example we 

generated (in order) 8, 4, 7, 6, and 6.   The first random number selects element #8 on the 

list, and the second selects element #4.    

(Figure 5.1 about here) 

 The element numbers could refer to the sequential position of elements on the list, 

or to another unique identifier for each element, so that each random number refers to no 

more than one element.   If the element numbering system has gaps, some random 

numbers might not correspond to any element.  In that case, we simply discard such a 

random number and move on to the next one.   

 In Figure 5.1, we generated more than two random numbers even though we 

wanted only two selections, because we planned to select elements without replacement.  

Since random numbers are usually generated independently, some could be duplicates.  

(Indeed, the fourth and the fifth random numbers are both 6.)  If a random number is the 

same as an earlier one, we discard it and move on to the next unique one.     

 Many lists used as sampling frames are available as computer files.  In such cases 

we can use a spreadsheet or a statistical program such as SPSS, SAS, or Stata to select a 

simple random sample.   

  

5.3.2   Systematic Random Sampling 
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 Systematic sampling selects elements from a list by using a fixed selection 

interval, calculated by dividing the number of elements on the list by the desired number 

of selections. Randomness is introduced by choosing a random number within the first 

interval to make the first selection.  To make subsequent selections, the interval is added 

successively to the preceding selection number.   

     For example, to select 20 elements from a list of 100, we use an interval of 

100/20 = 5, and we select every 5
th

 element.  To begin, we would take a random number 

between 1 and 5, say 3.  Then we would select elements 3, 8, 13, 18, and so on up to 98.   

The random number should be obtained from a table of random numbers or generated by 

a computer program, not a number we happened to think of “at random.”  Notice in this 

example that there are only five distinct samples of elements that can be selected, 

corresponding to the five possible random starts between 1 and 5.  This simplicity makes 

the method easy to use, but it has to be used with some care. 

 Systematic selection is used for many kinds of lists, but it is especially convenient 

for sampling from lists that are not computerized and when records are not numbered 

sequentially.  One only has to estimate the number of entries on the list, calculate the 

interval that will produce the desired sample size, generate a random start, and then just 

count off the selections.   

 Systematic selection never draws the same element more than once (unless a list 

has duplicates or occasionally when sampling is done with probability proportional to 

size, to be discussed below).   Moreover, a systematic sample is always spread out over 

all parts of a list.   For example, if our list is ordered chronologically by the dates of 

transactions or records, such a sample will cover the whole time period represented in the 

frame. 

 Systematic selection is relatively simple, and commonly used.  At least two 

potential complications can arise– the ordering of elements on the list, and dealing with 

fractional intervals. 

 

Order of the List 

 The ordering of elements within the list can pose the most important risk in 

systematic sampling.   The size of the fixed selection interval should not correspond with 



9 

 

any periodicity on the list.  Suppose we are studying the prevalence of different types of 

recreational activities, and we sample records by systematic selection from a list that 

sequentially orders consecutive dates.  If we use an interval of 7 (or some multiple of 7), 

all dates in the sample would fall on the same day of the week as the first selection.  

Since activity patterns vary across days (Monday and Saturday activities are quite 

different for many), we would not want a sample of dates consisting of only one day of 

the week.  Any interval other than a multiple of 7 would yield a good mix of days and 

provide a more representative picture. 

 Periodicity is a particularly obvious example, but other, more subtle, issues of 

ordering can also arise.  Consider a list of persons ordered from youngest to oldest.  

Depending on the size of the list and the interval size, different random starts could 

produce samples with noticeably different age distributions.  If the interval spans multiple 

ages, the random start will make a difference:  a low random start will result in a younger 

sample, and a high one will produce an older sample.   On the other hand, if the interval 

is smaller than the number of persons in the frame with any given age, the age 

distribution will not depend noticeably on the random start.  If the highest and lowest 

possible random starts would fall on persons in substantively different age groups at the 

beginning and the end of the frame, it would probably be best to order the frame by some 

other variable. 

 If the frame cannot be reordered and the order of the list is of concern, a simple 

and effective approach is to change the random start as selection proceeds.   With an 

interval of 10 and a random start of 2, for example, our first selections would be elements 

2, 12, 22, 32, and so on.  After reaching element 100, we could select a new random start, 

say 8, selecting elements 108, 118, 128, 138, and so on, until we change the random start 

again.  This involves little more work than using a single random start. 

 This point anticipates a subsequent discussion of “implicit stratification.”  Often a 

frame is deliberately sorted in a certain order to ensure that samples include all parts of a 

distribution.  Ordering persons by age and selecting systematically ensures that we 

sample our “fair share” of older, middle-aged, and younger persons without creating 

explicit strata.   Samplers like to take advantage of opportunities to stratify frames in such 
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a simple manner.  We must remain sensitive to the possible impact of the random start on 

a systematic sample, however, even when a list is ordered deliberately.   

 

Fractional Intervals 

 Fractional intervals are the other complication in systematic sampling.  If 

systematic selection is done by hand, it is easier to use a whole-number interval.  Suppose 

a list contains 9,560 elements and we want to select 200, so that the interval is 9,560/200 

= 47.8.  A simple approach is to round fractional intervals.  Rounding up lowers the 

sample size and rounding down raises it. The calculated interval of 47.8 in this example 

could be rounded up to 48, yielding 9,560/48 = 199 selections (for most random starts), 

or down to 47, leading to 9,560/47 = 203 or 204 selections (depending on the random 

start).  Usually it does not matter if the sample is a little larger or smaller, especially if we 

have to allow for losses due to ineligibility and non-response.   

 If we really need to select a specific number of elements, Figure 5.2 illustrates a 

procedure to do so, using a fractional interval.  The procedure is as follows:   

 Calculate the fractional interval.  To select exactly 4 elements from a list of 10, 

use the interval 10/4 = 2.5.    

 The random start should be a fractional number greater than 0 and less than or 

equal to the interval.  In Figure 5.2 the random start is 1.5.  To obtain a fractional 

random start between 0.1 and 2.5, one could pick a random integer between 1 and 

25 (10 times the interval), and divide by 10.  For example, the random integer 15 

would yield 1.5.   

 Add the interval repeatedly to the random start to generate a series of selection 

numbers, retaining the decimal fractions, until a selection number is beyond the 

end of the list.  In the example, the series is 1.5, 4.0, 6.5, 9.0, and 11.5.  

 Truncate each selection number to a whole number by dropping its decimal 

portion.   The truncated selection numbers in the example are 1, 4, 6, 9, and 11.  

Numbers that truncate to 0 and those beyond the end of the list (like the last 

number, 11) are discarded.   Truncation is simple to do, and it yields the correct 

probability of selection for all elements on the list (Kish, 1965, p. 116). 

(Figure 5.2 about here) 
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 In the example, the interval between selections alternates between 2 and 3.  It is 3 

between 1 and 4 and between 6 and 9, but it is 2 between 4 and 6.  The procedure yields 

exactly the desired number of selections. 

 Simple random sampling and systematic sampling are most commonly used to 

select samples in which each element in the frame has the same selection probability.  

Both techniques can also be applied to select elements with unequal probabilities.  We 

next cover the most common such situation, selection with probability proportional to 

size.  

5.3.3   Sampling with Probability Proportional to Size  

 Sampling with probability proportional to size (PPS) gives “larger” elements on a 

list a greater chance of selection than “smaller” ones.   Specifically, the probability of 

selecting an element is directly proportional to its size.  If one element is twice as large as 

another, it will have double the chance of being sampled.   

 Selecting with PPS is common in two-stage (or multi-stage) cluster samples 

(discussed below), in which first-stage selections are areas or other clusters that contain 

varying numbers of last-stage units (e.g. persons or households).  First-stage units 

(clusters) are selected with PPS, while last-stage units are usually drawn with probability 

inversely proportional to size.  PPS selection also is used for single-stage samples of units 

that vary in size, such as schools or businesses.  In such cases, for a fixed number of 

selections, a PPS sample usually generates more information than a sample selected with 

equal probability.   The PPS sample will tend to include more of the larger units than an 

equal probability sample in which small and large units have the same chance of 

selection.   

 

Preparing the frame  

 In order to select a PPS sample, each element in the frame must have an 

associated “measure of size” (MOS).   The size measure provides the basis for selecting 

some elements with greater probability than others.   Very often the MOS is a measure of 

estimated size, so this procedure is sometimes called selection with probability 

proportional to estimated size (PPES).  However, we ignore that distinction and refer to 

the method simply as PPS.   
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 Figure 5.3 illustrates PPS selection.  The bottom part of that figure lists 10 

elements.  The second column gives the measure of size associated with each element, 

which ranges from 1 to 7.  The MOS can be in any appropriate units – population totals, 

sales figures, square footage, number of students, or whatever, provided that the units are 

the same for all elements on the frame.  The scale of the units is less important than the 

relative size of the measure for different elements. 

(Figure 5.3 about here) 

 The third column in the figure shows the cumulative running total of the MOS as 

we go down the list.  The total of the MOSs for the 10 elements in the frame is 40 units.  

We calculate a selection interval using this total if we draw a PPS sample using 

systematic sampling. 

 The fourth column in the figure shows the selection range for each element—how 

the total range of 40 MOS units is divided among the 10 elements in the frame.  The 

width of each element’s selection range corresponds to its MOS, larger elements having 

wider ranges than smaller ones.   

 

Methods of PPS selection 

 With selection ranges determined for the elements, we can select a sample.  

Because samplers usually want to minimize the chance of selecting the same element 

more than once, they often select PPS samples using systematic selection.  However, as 

for an equal probability sample, we can use either simple random or systematic selection.   

 Simple random selection with PPS works in the same way as for equal 

probability samples, except that random numbers refer to the selection range of each 

element instead of its position on the list or some other identifier.   The MOS of an 

element determines the width of its selection interval and in turn its chances of being 

selected.  In Figure 5.3, selection ranges for all the elements together extend from 1 to 40, 

so the generated random numbers should lie within that range.   Suppose we generate or 

look up the random number 5.  That random number selects the element with a selection 

range that includes 5:  element #1, with a selection range of 1 to 5.   Because 

element #1’s selection range is five times larger than element #3’s (of width 1),  a 

randomly generated number will, on average, select element #1 five times as often as 
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element #3.  Using MOSs to determine selection ranges makes the probabilities of 

selection proportional to the size of each element.   

 Systematic selection of a PPS sample works the same way as SRS selection, 

except that the numbers for selections are generated systematically by adding the 

selection interval to a random start, instead of independently.   It is important to 

understand that the selection interval must be based on the total MOS.  In the example 

shown in Figure 5.3 we want to select three elements, so the interval is 40/3 = 13.3.   We 

then generate a random start between 0.1 and 13.3, say 5.5. Using the method for 

fractional intervals with truncation, we generate three selection numbers, 5.5, 18.8,  and 

32.1, which are then truncated to 5, 18, and 32, respectively.  These numbers fall within 

the selection intervals of elements #1, #5, and #9, so those three elements are selected.   

Once again, letting selection intervals differ according to the MOS makes probabilities of 

selection proportional to size.  

 If an element’s MOS exceeds the magnitude of the selection interval, it is certain 

to be selected once and might even be selected more than once.  Rather than leaving such 

elements on a list for PPS selection, we often include them in the sample automatically as 

“certainty selections” and remove them from the list before sampling.  In single-stage 

PPS samples, weights adjust for differences in selection probabilities for certainty 

selections.  For multi-stage samples, certainty selections are treated as distinct strata, and 

subsamples of other units are drawn from them.    

 It is also possible to leave large elements on a list for PPS selection when drawing 

multi-stage samples, even though they must be selected at least once.  This may be the 

most convenient approach with long lists.  If a large first-stage element is selected twice, 

then the size of the second-stage subsample from it is doubled.   

 Problems can also arise if some first-stage elements are too small to yield 

sufficiently large second-stage samples.  In such cases, groups of two or more first-stage 

elements can be formed.  Grouped units will be selected (or not) together, with an MOS 

based on their combined MOSs.  Kish (1965, pp. 244-245) describes a clever objective 

method of linking small units after selection, especially if they are too numerous to link 

by hand in advance.   
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 We have described and illustrated the basic methods of random sampling from a 

single list.  The next sections discuss topics involving sample design rather than the 

mechanics of drawing samples: these topics are stratification and clustering. 

 

5.4  Stratification  

 Stratification is a procedure whereby we divide the sampling frame for a 

population into separate subpopulation frames, in order to draw a separate sample from 

each subpopulation.  In practice, stratification usually entails dividing a big computer file 

up into smaller files, so that we can sample separately from each.  There are several good 

reasons for dividing the overall frame into subpopulation frames.  Unlike sample 

selection, however, this division is not based on some random process.  We first review 

some reasons for stratifying, and then we show how to apply the random sampling 

methods of previous sections to the strata.    

  

5.4.1  Reasons to stratify 

 Both theoretical and practical reasons underlie the technique of stratification.  The 

practical considerations are usually the more decisive.  The two most common reasons 

behind stratification are to facilitate making estimates
3
 for subgroups and to increase 

sample precision (that is, to reduce the size of standard errors and confidence intervals). 

 

Separate reporting areas – proportionate sampling 

 Research studies often seek to obtain separate estimates for parts of the 

population.  For example, a sample of schools might need to produce results separately 

for different geographic regions.   A reasonably large simple random sample would 

probably include some schools in all major regions, but it might not (because of the 

random selection process) contain enough schools to make adequately precise estimates 

for some of the smaller regions.   Stratifying the frame by region and drawing separate 

samples would allocate a proportionate share of the total sample to each region. 

                                                 
3
 The term “estimate” means a particular result calculated from the sample.  It is our estimate of the 

corresponding value in the population from which the sample was drawn.  
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 Figure 5.4 illustrates stratification.   There, a frame including 1800 schools is 

divided into subpopulation frames for three regions.  Then a separate sample is drawn 

from each regional frame.  Following the design in the second column, we select the 

same proportion of schools from each region, with a sampling fraction, f, of 0.10 or 10%.   

This is known as a “proportionate stratified sample.”    

(Figure 5.4 about here) 

 A proportionate stratified sample design ensures that each stratum (here, region) 

will be represented in the sample in proportion to its size in the population–including, in 

this case, exactly 10% of the schools in each region.  A simple random sample from the 

entire frame should yield approximately 10% of the schools in each region, but the actual 

percentage in each region will vary from sample to sample.   We may not want to risk 

ending up with a smaller than expected sample from a small stratum (like Region #2 in 

Figure 5.4).  Stratifying guarantees that we will have a certain number of cases in each 

stratum.  If we must report survey results separately for values of some variable, 

stratifying by that variable is a good idea. 

 Stratifying requires that information on every element’s stratum be in the frame 

before the sample is selected.  We cannot stratify on variables that will only be measured 

during the survey itself.  Geography is often used for stratification since geographic 

variables are usually known ahead of time for all elements in a frame. 

 

Oversampling some strata – disproportionate sampling 

 Stratifying by some variable such as region and selecting proportionately will 

ensure that the sample includes a certain fraction of cases from each stratum, but that may 

not be enough for some smaller strata.   If we want good estimates for certain subgroups 

(strata) of the population, we may need to allocate more than a proportionate share of the 

sample to those strata.  Having larger samples in those strata will allow us to calculate 

results for those strata with more precision.  This type of sample is called a 

“disproportionate stratified sample.”   

 The design in the third column of Figure 5.4 illustrates disproportionate 

stratification.  The sampling fraction, f, differs across strata.  In the figure, large 

Region #1 (with 1,000 schools) is sampled at a low rate (5%), small Region #2 (300 
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schools) is sampled at a high rate (15%), while medium-sized Region #3 (500 schools) is 

sampled at an intermediate rate (10%).  This increases the sample size in the smaller 

strata, to provide enough cases to make reasonably good within-stratum estimates of the 

variables of interest.  Limited budgets may often require reducing the sampling fraction 

in the bigger strata to compensate for larger samples in smaller strata.   

 Although disproportionate sampling improves the precision of estimates within 

the smaller strata, it generally reduces the precision of estimates for the overall sample, 

compared to a proportionate sample of the same size.  Because the sample is no longer 

spread over all strata (regions) in proportion to the population, we need to use weights 

when calculating statistics describing the whole sample.  These compensate for 

disproportionate selection, which results in having “too many” cases from smaller strata 

and “not enough” cases from larger strata in the sample.  The consequence of having to 

use such weights is a reduction in precision for the overall sample.
4
  Disproportionate 

selection involves a tradeoff between overall precision and precision in smaller strata.  

This tradeoff is the price we pay to have a single survey do multiple jobs.  If we want 

reasonably good estimates for small subgroups, and if we can sacrifice some precision in 

the estimates for the population as a whole, then disproportionate sampling can be a good 

strategy. 

 

Disproportionate sampling based on screening 

 Suppose we want to oversample certain ethnic groups in a population.  If our 

frame (e.g. a list of students or hospital patients) includes a race or ethnicity code, we can 

create strata for the ethnic groups and sample some groups with higher sampling fractions 

than others.  However, if we must use another frame (e.g., a list of telephone numbers or 

addresses) that lacks ethnicity data, we cannot stratify ahead of time.  Instead we must 

begin the interview with “screening” questions, to ascertain the ethnicity of those 

selected, and then oversample by continuing with the full interview at different rates for 

                                                 
4
 See Kish, 1965, pp.429-431, for a method to estimate the loss in precision due to the oversampling of 

strata.   Software to calculate complex standard errors for specific variables will automatically include the 

effect of weighting in the standard errors, but Kish’s procedure offers a convenient way to isolate and 

estimate the overall effect of weighting for a particular survey design.  
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different groups.  For instance, we might interview all African Americans and Latinos in 

a sample, but only half of those in other groups.   

 Fieldwork planning and supervision must control the implementation of screening 

procedures like this “continue half of the time” rule.  Our preference is to control such 

selection rules by dividing the sample into random parts (“replicates”) and then assigning 

a different selection rule to each part.  For the example in the preceding paragraph, we 

would divide the sample at random into two halves.  In one half, interviewers would 

attempt to complete the interview with everyone.  In the other half, they would attempt to 

interview only African Americans and Latinos.  African Americans and Latinos would 

then have double the probability of selection into the overall sample, compared with the 

other groups.   

 

Reducing sampling error – “optimal allocation” 

 Often a major reason for stratifying is to attempt to increase the precision of 

statistics by creating strata based on one or more variables that are correlated with the 

primary variable we are trying to estimate.  If the variation of our primary variable within 

strata is less than its variation overall, proportionate stratification will increase the 

precision of the estimate of our primary variable (see Groves et al., 2009:  pp. 114-120; 

Kalton, 1983:  pp. 20-24).   

 Disproportionate stratification can sometimes be used to increase precision even 

more, by using a strategy called “optimal allocation” (see the Frankel and the Land and 

Zheng chapters in this volume).   Optimal allocation is a strategy for allocating more 

(than proportionate) cases to those strata with relatively high variability in the primary 

variable of interest.   Specifically, if data collection costs are the same in all strata, the 

sampling fractions in the strata should be proportional to the primary variable’s standard 

deviation in each stratum.  For instance, if the primary variable’s standard deviation is 

twice as large in stratum #1 as in stratum #2, the sampling fraction in stratum #1 should 

be double the sampling fraction in stratum #2. 

 If data collection costs differ across strata, optimal allocation also calls for 

increasing the sampling fraction in low-cost strata, and decreasing it in more expensive 

strata.  More specifically, sampling fractions should be inversely proportional to the 
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square root of the cost per case in a stratum.   For example, if costs per case are four 

times greater in one stratum compared to a second, the more expensive stratum should be 

sampled at half the rate.    

The combined criteria of variability and cost can be summarized as: 

fh  = k * Sh / √Ch  

where fh is the sampling fraction in stratum h, Sh is the standard deviation in stratum h of 

the primary variable to be estimated,  Ch is cost per element in that stratum, and k is a 

constant used to scale the sampling fractions to produce the target sample size.  

When these criteria can be applied, sampling theory shows that confidence 

intervals for means, percentages, and totals based on the overall sample will be as small 

as possible for a given budget (Kish 1965, pp. 92-98; Kalton 1983, pp. 24-26).    

Unfortunately we often lack the information necessary for applying those 

optimization criteria.  Unless estimates are available from prior studies, we may not know 

the details of the primary variable’s distribution in advance, and will not be able to 

estimate its standard deviation in various strata.  Moreover, costs per case are often little 

different for different parts of the frame.    

 And finally, one rarely conducts a whole survey just to obtain estimates for a 

single variable.   Surveys are almost always multi-purpose, and the optimal sample 

allocation for one variable may not be optimal for some other variable of equal 

importance.  Proportionate stratified sampling, with the same sampling fraction for all 

strata, is usually best – unless we have a good reason to oversample a particular 

subgroup.  

Nevertheless, optimal allocation is a very helpful heuristic for designing a sample.  

Stratification is not simply a matter of convenience or a way of producing reports for 

separate parts of the sample.  The goal of good sample design is to generate samples that 

produce results that are as precise as possible, and stratification helps to do that. It is 

among the most useful tools available for designing samples.   

 

5.4.2  Methods of stratification 
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 Stratification may be achieved explicitly by creating sub-frames, or implicitly by 

exploiting the order of elements in a single frame.  Some sample designs combine the 

two.   

 

Explicit stratification 

 In introducing stratification, we tacitly assumed that strata are created explicitly, 

by physically dividing the overall frame into separate sub-frames or files.   Then a 

separate sample is drawn from each.  This is the basic method of stratification. No 

formulas dictate how many strata to create.   From a practical point of view, the number 

of strata required depends on the number of separate subgroups for which results must be 

presented and on whether we can subdivide the population based on a variable that is 

correlated with the variable(s) of primary interest.  

If we plan to use disproportionate stratified sampling, we must keep track of the 

relative sampling fractions for strata, so that the strata can be weighted appropriately to 

reflect the population.  Then we will be able to use those weights to combine the data 

from different strata when calculating results for the overall sample,  If, on the other 

hand, we do not plan to apply different sampling fractions to different parts of the frame, 

we do not always need to stratify explicitly.  A simpler method, implicit stratification, is 

often sufficient. 

   

Implicit stratification 

 Stratifying a frame before sample selection ensures that the sample is distributed 

over the various segments of the population.  “Implicit stratification” accomplishes this 

without creating explicit strata for the various segments.  

 With implicit stratification, we sort the frame by some variable and then select a 

systematic random sample.  For example, to ensure that a sample of addresses is spread 

over all regions of a state, we could first sort the address list by zip code, and then select 

addresses with systematic sampling (not with SRS, which would defeat the purpose of 

sorting).  By selecting the sample in this manner, we can be sure that the sample will 

include addresses from all of the major geographic areas included in the frame.  
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 Spreading the sample over the distribution of a variable may also improve the 

precision of the statistics we are estimating.  In a study of health variables, for instance, 

sorting a frame of persons by their age will usually be helpful, since age is highly 

correlated with health status.  Controlling the age distribution in the sample should 

therefore reduce the sampling error of estimated health statistics. 

 Stratifying implicitly is often more practical than stratifying explicitly. Creating 

explicit strata for zip code groups, for example, could require a fair amount of work:    

examining the distribution of elements in the frame by different series of zip codes, 

deciding how many strata to create, and finally dividing the frame into separate files.   

Sorting by zip code is much easier than going through all those steps. 

 Another reason to stratify implicitly on a variable is that we might prefer to base 

explicit strata on other variables.  For example, we might need to stratify a list of schools 

by type of school (public, private, charter) and by grade level.  Creating explicit strata for 

groups of zip codes would reduce our opportunity to stratify on these other important 

variables.   It may be preferable to sort on zip code within explicit strata defined by the 

other variables.  We comment further below on this very useful combination of explicit 

and implicit stratification. 

 Implicit stratification is very useful and common, but it cannot achieve all the 

goals of stratification.  In particular, using disproportionate stratification to oversample 

certain subgroups requires the creation of explicit strata so that a larger sampling fraction 

can be applied in certain strata.   Also, implicit stratification cannot guarantee a specific 

number of selections in any particular segment of the frame.   Explicit strata should be 

created if this is important for reporting results.   Finally we should check for ordering 

effects in any systematic sample.   If the selection interval is large compared to the 

number of elements in each category of the variable we are sorting on, high or low 

random starts could produce samples that differ in non-random ways. 

 

Combining explicit and implicit stratification 

 Stratification imposes some control on the sample selection process by ensuring 

that a sample is spread over the distributions of certain variables in a predictable way.  In 
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general, more strata yield better control.  Consequently, samplers tend to stratify the 

sampling frame as much as they can.   

 It is often desirable to stratify by more than one variable at the same time (for 

instance, by creating a stratum for each school type within each region).  Explicit 

stratification offers the most control over sample selection, but a frame can be divided 

into only so many categories at once.   A solution is to create explicit strata based on 

some variables, and then sort the frame on other variables within each explicit stratum, to 

gain the benefit of some additional implicit stratification.  This combination of explicit 

and implicit stratification is common. 

 Explicit stratification is often used for major geographic areas such as regions or 

states, especially if we know in advance that separate results will be required for those 

segments of the population.  If information for further stratification is available in the 

frame, the simple device of sorting on one or more variables and then selecting 

systematically within each explicit stratum takes advantage of additional opportunities to 

attain the goals of stratification. 

 

5.5  Cluster Sampling 

 When we sample, our eventual goal is to collect data on a specific type of 

“element” (e.g., students).  An “element sample” selects elements directly, as from a list.  

So far, everything in this chapter has been about “element sampling.”  Often, however, 

we plan to sample elements only though groups of elements known as “clusters,” usually 

to reduce costs.  Such circumstances require “cluster sampling.” 

 Figure 5.5 presents an example of a cluster design for sampling students in a state.  

Often we cannot sample students (the elements) directly, because listing them would be 

too costly, or because we wish to concentrate the sample in a limited number of schools 

to reduce costs during data collection.  So instead of selecting students directly, we might 

select students within a sample of schools (clusters).  Within each selected school we will 

select some (or all) of the students.  In the figure, School #1 and School #3 are selected as 

clusters for further sampling of students, but School #2 and School #4 are not. 

(Figure 5.5 about here) 
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 Because the same groups of elements (like schools) could be used either as strata 

or as clusters, the distinction between stratification and clustering can be confusing.  

Strata and clusters differ in an important way.  After dividing the elements in a frame into 

strata, we subsequently sample elements from every stratum.  The point of grouping 

elements into clusters, however, is that we select elements only from some of the clusters.  

  

Effect of cluster sampling on precision 

 Cluster sampling usually increases the size of standard errors and confidence 

intervals of the statistics we calculate from the sample results.   Notice in Figure 5.5 that 

we will not sample any students in schools #2 and #4.  Nevertheless, we certainly will 

want to generalize results to all students in the state– not only to students in those schools 

that happen to have been selected as clusters.  Since clusters are selected at random, the 

results can be generalized to the whole population, but the sampling of clusters introduces 

a new level of uncertainty into our results.   

 What if we had selected, by chance, other clusters into the sample – how different 

would the study results be?  How different are the clusters (schools) of students from one 

another, in regard to the variables we want to study?  If the sampled schools are not very 

different, we can reasonably infer that our results would have been similar had we 

sampled other schools instead.  If, on the other hand, the sampled schools turn out to be 

quite different from one another, our uncertainty due to the sampling of clusters 

increases, which correspondingly increases the width of confidence intervals for statistics 

based on the sample.  Campbell and Berbaum (this volume) cover methods of computing 

these confidence intervals for cluster samples; here we try to provide an intuitive 

understanding of the issues.  

 Comparing two extreme cases is informative.  Consider a sample of 2,000 

students within 100 schools, an average of 20 students in each.  Suppose that some 

characteristic (a certain test result, for instance) of all students within each school is 

exactly the same, but the results for all sampled schools differ from one another.  In this 

case, all the information about test results in a school could have been obtained from a 

single student in each school.  Instead of sampling 2,000 different students, we could 

have learned just as much from only 100 students, with one student per school.  So our 
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cluster sample of 2,000 students is the equivalent of a simple random sample of only 100 

students.  Calculating a confidence interval by assuming that we have a simple random 

sample of 2,000 independent selections overstates sample precision, because of the high 

(here, perfect) correlation between elements within clusters.  When elements within 

clusters are homogeneous, sampling additional elements within clusters provides less 

information than one might expect. 

 Now consider the other extreme case.  Consider the same sample of 2,000 

students within 100 schools.  What if the average of some characteristic (e.g., a certain 

test result) was exactly the same for all schools, though students within schools differed 

from one another on that characteristic?   Then there would be no “cluster effect” on the 

results; it would have made no difference if we had sampled 2,000 students from 100 

schools, or 40 schools, or even 2 schools (if they were large enough).  In this ideal case, 

the cluster sample of 20 students within each of 100 schools is equivalent to a simple 

random sample of 2,000 students from a statewide list.  Both samples would have the 

same confidence intervals.   This is ideal:  we conserve resources by dealing with only 

100 schools, but we obtain results as precise as those from a sample of 2,000 students 

spread around the state. 

 In reality, of course, the effect of clustering almost always lies somewhere 

between these two extremes.  Results usually differ between clusters, and rarely are all 

elements within clusters exactly the same.  The more the variability between clusters and 

the less variability among elements within clusters, the lower the precision of sample 

statistics in a cluster sample.   

 

Understanding the tradeoffs 

 Cluster sampling involves a tradeoff between sample precision and data collection 

cost.  From a precision standpoint, no clustering at all is best, and spreading the sample 

over many clusters is preferable to concentrating it within a few.  Statistics will almost 

always be more precise for a sample of 500 elements with 100 clusters and 5 elements in 

each cluster than for 25 clusters with 20 elements in each. 

 Usually, however, the design with more clusters will cost substantially more. 

Gathering data in a new cluster may involve additional travel expense and other costs 
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(e.g., additional time negotiating access with a new school principal or other 

“gatekeeper”).  Such costs are greater than those of collecting data on an additional 

element within an already-selected cluster.  If the cost of including an additional cluster 

(school) is 10 times that of collecting data on an additional element (student) within an 

existing cluster, the “relative cost” is 10. 

By using fewer clusters and increasing the number of elements in each one, we 

can afford to collect data on more elements, which is one way to increase precision.  At 

the same time, concentrating the sample elements in fewer and bigger clusters will 

usually reduce precision.  How can we balance these conflicting goals – high precision at 

minimal cost – into a workable design? 

 

Cluster effect and design effect 

 Quantifying the “cluster effect” can help us resolve this tradeoff.
5
  Sampling 

theory calls this effect the “coefficient of intraclass correlation” and represents it by roh 

or the Greek letter ρ.  Kish (1965, p. 161) clarifies by calling it a “rate of homogeneity.”  

Like the familiar Pearson correlation coefficient, roh is scaled to range between zero and 

one. 

 We can calculate roh only after a study is completed and standard errors have 

been computed (as discussed in by Campbell and Berbaum, this volume).  When 

designing a cluster sample, however, it is useful to have a guess about the probable size 

of roh, perhaps based on results of other studies that used similar samples.  Most research 

reports do not present values of roh itself, but they sometimes report the “design effect,” 

from which we can calculate roh. 

 The design effect, deff, is the ratio of the variance of a statistic calculated from a 

cluster sample (or any complex sample) to that of the same statistic calculated from a 

simple random sample of the same size.   For example, if the variance of a statistic in a 

cluster sample is twice as large as its variance under SRS, the design effect is 2.     

 The following important formula (Kish 1965, pp.161-164; Groves et al. 2009, 

pp. 109-112) gives the relationship between roh and deff, where b is the average number 

                                                 
5
 See Frankel (this volume) for more detail on cluster and design effects.  Harter et al. (this volume) also 

discuss these issues. 
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of elements per cluster: 

  deff  = 1 + roh(b -1 ) 

As the formula makes clear, we can reduce the design effect, and improve precision, 

either by using clusters that have a low roh (low homogeneity), or by designing a cluster 

sample with a low cluster size b.  If roh is zero, the design effect will be 1 regardless of 

the cluster size b. But if roh is high, even a relatively small cluster size will result in a 

high deff.   

 Solving for roh in terms of deff and b yields: 

 roh = (deff – 1) /  (b – 1)  

If a study similar to ours reports design effects and provides the information needed to 

calculate average cluster size (the total number of elements and the number of clusters), 

we can calculate roh and use that information to design our cluster sample.
6
  Or, if we 

have access to the data file of a prior study, we can calculate deff and roh for ourselves, 

using newer versions of statistical packages like Stata or SAS that calculate the correct 

variances and standard errors for cluster samples.   

 In any case, to optimize the design of a cluster sample we must make some guess 

about the value of roh that we expect to encounter.  In some studies roh is relatively 

small, like 0.05.  A moderate roh is 0.10, and a high one is 0.20.  Notice that even a 

moderate roh of 0.10 will produce a deff of 2 if the average cluster size is 11, so that the 

confidence intervals for the cluster sample will be 40% wider than those for a simple 

random sample of the same size. (If the variance is two times larger, standard errors are 

larger by the factor √2 = 1.4)    

 

Optimal cluster size 

 With an estimate of roh for the primary variable of interest in a sample that uses a 

specific type of cluster design, we can begin to resolve the precision-cost tradeoff 

described above.  We also require information on the relative cost of adding a new cluster 

versus collecting data from one more case in an already selected cluster.   An easy-to-

                                                 
6
 Design effects may be reported in two different forms. One form is deff, the ratio of the variances of a 

statistic from a cluster sample and from a simple random sample of the same size.  The other form, deft, is 

the ratio of the standard errors (the square roots of the variances) of the statistic for the two types of 
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apply formula gives the optimal cluster size, b, for a given roh and relative cost (Kish, 

1965, p. 269): 

 optimal b = √ ( relative cost * (1-roh)/roh ) 

For example, with a roh of 0.05 and a relative cost of 10, the optimal b is √(10*19)=14 

(rounded).  This means that we should plan to sample about 14 elements per cluster.  That 

degree of clustering should produce the narrowest confidence intervals possible for a 

given budget, for those variables having a roh of 0.05.  Precision will be lower for 

variables with a higher roh, and greater for those with a lower roh.  Table 5.1 gives the 

optimal cluster size for several combinations of relative cost and roh.    Notice that only 

when relative cost is very high or roh is very low do larger cluster sizes give the optimal 

result.   

(Table 5.1 about here) 

 Different variables can and do have different values of roh, and therefore different 

optimal cluster sizes.  Moreover, we are often guessing about the size of roh.  In practice, 

then, the cluster size is often set using a compromise figure.  Nevertheless, the exercise of 

calculating optimum cluster size has heuristic value for designing good samples, by 

requiring us to think systematically about the tradeoffs.  Reducing costs is not the sole 

object of cluster sampling.   For any given budget, we want a sample design that provides 

the most precise results possible.  

 

 Selecting clusters 

 Selecting clusters requires a frame of clusters, and uses the techniques already 

described above for selecting individual elements from a frame.  As a first step, it can be 

advantageous to stratify clusters, to ensure that the selected clusters are spread over the 

whole population.   We may also plan to oversample certain strata (types of clusters).  

Stratification of clusters could also reduce sampling error, if the clusters can be grouped 

into strata likely to differ on the variables of interest, since the standard errors for 

statistics will be computed based on differences between clusters within the same 

                                                                                                                                                 
samples.  Since deft is the square root of deff, if deft is reported one should convert it to deff by squaring 

before using the formula in the text to calculate roh.   
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stratum.   Through such stratification, we might mitigate some of the loss of precision 

that usually results from cluster sampling.   

 Cluster sampling can be carried out either as a one-stage sample or as part of a 

two-stage (or multi-stage) sample.  An example of a one-stage cluster sample is a sample 

of students within schools, in which we collect data on all students within the selected 

schools.   One-stage samples have large clusters, and usually large design effects as well, 

so confidence intervals for most statistics will be wider than one might expect for the 

number of students sampled.   

 Nevertheless, the type of data involved, and the cost structure for collecting them, 

may justify sampling complete clusters.  Suppose that the main cost of a survey of 

students is the initial cost of contacting a school and getting access to its records.  After 

that, the marginal cost of data on additional students within that school may be negligible, 

especially if the data are computerized.  That is, the relative cost of selecting an extra 

cluster (school), compared to that of collecting data on an individual element (student), 

may be so high that it justifies large clusters even with a high expected roh.    

 

Two-stage cluster sampling 

 Often, however, we want to sample only some of the elements in the selected 

clusters.  Then we need a two-stage sample.  A certain number of clusters are selected in 

the first stage, and then elements are selected only within the selected clusters in the 

second stage.  Clusters are stepping stones providing access to the elements within each 

cluster.  Large-scale area probability samples (Harter et al., this volume) are an important 

application of such designs.  We briefly discuss their use in smaller scale studies here.   

 In two-stage cluster sampling, one should decide on the selection method for the 

two stages jointly.   The simplest method is to select clusters with equal probability at 

the first stage, and then to select elements, also with equal probability, within the selected 

clusters.   This method produces an equal-probability sample that would not require 

sampling weights to be used in analyses.   For example, we could select 1% of the 

schools in a state and then subselect 10% of the students in each selected school.   The 

overall probability of selection would be 1/100 x 1/10 = 1/1000 and would be the same 

for all students in the state.  However, this method yields little control over the total 
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sample size.  If the selected clusters happen to be larger schools, the 10% subsamples will 

also be large; if they happen to be small, the 10% subsamples will be correspondingly 

small.  Stratifying the schools by size could control the sample size to some extent, but 

then we give up the opportunity to stratify using some other, perhaps more interesting, 

variable(s). 

 A more efficient way of maintaining control over sample size is to sample clusters 

with probability proportional to size (PPS), and then to subsample elements within the 

selected clusters with probability inversely proportional to size.  Suppose we plan to 

select 5 elements per cluster.  If the first-stage PPS sample selects a cluster with a 

measure of size (MOS) of 100, we would subsample elements within it with the fraction 

5/100:  either sampling elements at random at the rate of 5%, or systematically sampling 

them using an interval of 20 and a random start between 1 and 20.   Element samples 

within each of the other selected clusters would be drawn using a fraction based on its 

respective MOS – that is, 5 / MOSi.   This procedure can be summarized with the 

following equation: 

 Probability =  (a * MOSi  /  Total_MOS)  *  (5 / MOSi)  

where MOSi is the measure of size for cluster i, and a is the number of clusters selected. 

 Sampling with PPS at the first stage and inverse PPS at the second stage produces 

an equal-probability sample.  Notice that the MOSi in the equation above then cancels 

out:  the overall sampling fraction (or probability of selection) is the same (i.e., 

5a/Total_MOS) for all elements in all clusters.   Therefore it is not necessary to use 

sampling weights in analyses.  The advantage of this method is that total sample size is 

quite predictable, provided that the actual cluster sizes found later during fieldwork are 

not very different from the MOSs for the clusters.  To ensure that the overall sample 

remains equal-probability, subsampling from each selected cluster must be based on its 

MOS, not its actual number of elements found later during fieldwork (otherwise the 

MOSi in the equation above will not cancel out).  

 If we decide to select exactly 5 units in a cluster (instead of applying the second-

stage fraction 5/MOSi), our second-stage sampling fraction will be 5/Ni where Ni is the 

actual number of units in the cluster found during fieldwork.  Then the overall probability 

of selection would be:  
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 Probability =  (a * MOSi  /  Total_MOS)  *  (5 / Ni).  

Notice that MOSi and Ni do not cancel each other out of this equation, unless they are 

exactly the same in every cluster (which is unlikely).  The units selected in cluster i 

would therefore be selected with probability proportional to the ratio MOSi / Ni which 

could be different for every cluster.  We should compensate for such a departure from 

equal-probability sampling by using weights, a topic we turn to next.  

 

  

5.6  Weighting 
 

 Several features of samples, even for small-scale studies, may require that weights 

be used in data analysis.  This section provides a brief summary of the principles of 

weighting.  

 Weights give some cases more influence (weight) than others when calculating 

statistics.  Their basic purpose is to correct for biases in the data, resulting from either  

the sample design or data collection procedures, that end up producing “too many” 

sample elements from one population segment, and “not enough” from some other 

segments.  The sample designer should provide instructions for creating basic sampling 

weights for any sample design other than an equal-probability sample. 

 

Relative weights versus expansion weights 

 One distinction cuts across all types of weights:  that between relative weights and 

expansion weights.   This difference is simply a matter of scale. 

 Expansion weights scale the total weighted number of cases up to the size of the 

population that the sample represents.   For example, if we sampled 1% of students from 

some list, each student would be given a weight of 100 (on average).  If that 1% sample 

yielded 500 students, the expansion weights would project sample results up to the 

50,000 students in the population.  Expansion weights are especially useful when 

presenting results to policymakers or other publics interested in knowing not only what 

percentage of people have some characteristic but also how many. 

 Relative weights scale the weighted number of cases to the actual size of the 

sample, and they usually have a mean of 1.  Some cases have relative weights greater 
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than 1, and others have relative weights less than 1, but  the total weighted number of 

cases is the same as the actual sample size.  Data analyses and presentations of results 

often use relative weights, to convey an approximate sense of the precision of sample 

statistics.  Using expansion weights could give the misleading impression that statistics 

are based on tens of thousands of cases, when in fact the sample may only include a few 

hundred.   

 Expansion and relative weights for different cases in a given sample should have 

the same proportionality to one another.  For example, one case might have a relative 

weight of 1.5, and another a relative weight of 0.75.  The corresponding expansion 

weights might be 1,000 and 500 – in the same ratio of 2:1.  When calculating descriptive 

statistics other than totals, using either type of weight should give the same results.  All 

weighting adjustments discussed below can be used to construct both expansion weights 

and relative weights.  Expansion weights can readily be converted into relative weights 

by dividing them by the mean of the expansion weights.  To convert a relative weight 

into an expansion weight, we must know the total population size or the sampling 

fraction. 

  

Adjusting for selection probabilities  

 Section 5.4 introduced disproportionate stratified sampling, in which we divide a 

sampling frame into several strata and sample the strata at different rates.   For instance, 

with a sampling frame divided into geographic regions, we might sample smaller regions 

at higher rates than larger ones, to increase the sample size and thus the precision of 

estimates in smaller regions.   

 It is crucial to keep track of the sampling rate used in each stratum.  When 

we combine results from different strata into estimates for the full population,  data from 

different strata must receive different weights to take into account  the oversampling of 

some strata and the undersampling of others.  This first weighting adjustment factor, 

applied to every case in the data file, is based on the inverse of the sampling fraction in 

each case’s stratum: 

 Weight factor #1 = 1/fh 
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where fh is the sampling fraction for stratum h.   If we sample elements in stratum 1 with 

the fraction 1/100, and those in stratum 2 with the fraction 5/100, the first weight factor 

for the cases in stratum 1 will be 100, and the factor for stratum 2 will be 100/5 = 20. 

 Sometimes the information needed to adjust for different probabilities of selection 

is only available after the fieldwork has been completed.  For example, in household 

samples of adults, usually only one adult is selected at random to be interviewed within 

each sampled household.  An adult who lives alone will always be selected if we select 

her or his household.  In comparison, the chance of selecting an adult who lives with one 

other adult is only half as large.  However, we do not know the number of adults in the 

household until after it is selected and contacted. 

 Differences in selection probabilities for households due to multiple telephone 

numbers in random-digit-dialed telephone samples are another common example.  A 

household with two separate telephone numbers (regularly answered and not used 

exclusively for a fax machine or a computer modem) has twice the chance of selection as 

one with a single telephone number.   Likewise, if cell phone numbers as well as landline 

numbers are in the sampling frame, they also affect the probability of selecting 

individuals.  Someone who receives calls via a cell phone has one chance to be called on 

the cell phone, and another to be selected through the household’s landline.  Whenever 

the elements in the survey population are selected at different rates, we must compensate 

by using another weighting factor.  This adjustment requires that the survey obtain data 

on the source of differences in selection probabilities (e.g. the number of adults in a 

household, and the number of telephone numbers).  This second weighting adjustment 

factor is 

 Weight factor #2 = 1/pi, 

where pi reflects influences on selection probabilities for case i.   

 This weight factor can combine more than one factor affecting differential 

selection probabilities.  If, for example, a household has two telephone lines and three 

eligible adults, the value of the combined value of pi for an adult in that household is 2/3, 

the product of the telephone factor of 2 and the adults factor of 1/3.  Since weight 

factor #2 is the inverse of pi, the second weighting adjustment for such an adult would be 

1/(2/3)  =  3/2 = 1.5. 
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Non-response adjustments 

 Survey response rates are rarely 100%.  Not adjusting for differential non-

response tacitly assumes that all non-respondents are similar to the average respondent 

with respect to the variables measured.  If non-response is concentrated in certain 

subgroups, statistics for the sample will under-represent those groups.  Weighting 

adjustments for non-response compensate for this.  Such adjustments assume that non-

respondents in a subgroup are more like the respondents in that subgroup than the 

average respondent.  If the subgroup classification is related to the variables we are 

estimating, a non-response adjustment may improve our estimates.    

 To make a weighting adjustment for non-response, we must calculate a separate 

response rate for each subgroup.  In order to do that, we must know the subgroup 

membership for all elements in the sample – non-respondents as well as respondents.     

We cannot use a subgroup classification to adjust for non-response if it becomes known 

only after fieldwork.  For example, we usually do not know the race or ethnicity of 

sampled persons before interviewing them, so we cannot usually calculate separate 

response rates for race/ethnicity subgroups.  Sampling strata, therefore, are commonly 

used subgroup classifications for purposes of non-response adjustment, since we know 

the stratum membership for every sampled element. 

Weighting adjustment factors for non-response are the inverse of a subgroup’s 

response rate:  

Non-response factor = 1/rrg 

where rrg is the response rate for group g, expressed as a proportion, like 0.50 or 0.45.   

If response rates are similar in all subgroups, this non-response adjustment factor 

will also be similar for all subgroups, and it will have little or no impact on the relative 

size of weights.  It will, however, increase the weighted number of cases.  That can be 

important when creating expansion weights, to estimate the number of elements in the 

population having a certain characteristic.   
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Putting the factors together 

 After calculating the factors that adjust for differences in probabilities of selection 

and non-response, a weight variable is constructed by multiplying them together.  The 

value of the weight variable for case i in stratum h and subgroup g in the sample is the 

product of the factors described above: 

 weightghi  =  (1/fh)  * (1/pi)  *  (1/rrg) 

where: 

  fh is the sampling fraction for elements in stratum h, and  

 pi is the probability factor for selecting element i, as learned during fieldwork, and 

 rrg is the response rate for elements in group g. 

 

 This weight will be an expansion weight if the sampling fractions have been 

expressed in absolute terms (like 1 / 10,000) instead of relative terms (for example, that 

stratum 1 was sampled at double the rate of stratum 2).   Relative weights that yield the 

same number of weighted cases as the actual number of completed cases in the data 

file (n) can be calculated by dividing the above-calculated weightghi for each case by the 

mean of the weights: 

 relative weightghi  =  weightghi /(Σ(weightghi)/n)  

This weight (either expansion or relative), adjusting for selection probabilities and 

response rates, is sufficient for many studies.  Sometimes, however, we want to go further 

and adjust the sample distributions to match some criterion distribution.  We turn to that 

topic next. 

 

Post-stratification weights 

 After the weighting adjustments for selection probabilities and response rates have 

been made, noticeable differences between the distributions of certain variables in the 

sample and in the population may still exist.  One common difference is for the 

percentage of women in the sample to exceed that in the population.  The response rate is 

generally a little higher among women than among men, but we usually cannot adjust for 
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differential non-response by gender because the gender of respondents becomes known 

only during fieldwork.   

 Another reason that a sample distribution may differ from a criterion distribution 

like the U.S. Census is that the sampling frame may not cover some groups as well as 

others.  Race and ethnic distributions could diverge from Census figures because the 

sampling frame is less apt to include very low income households (because they are less 

likely to have telephones, for instance), and those missing households might be 

concentrated in particular ethnic groups.     

 Post-stratification weighting adjustments make the distributions of key variables 

in the sample match Census figures or some other criterion distribution.  Matching the 

distributions of several different variables at once (e.g. gender, age, education, race, and 

income) can be quite complicated.
7
   But post-stratification on one or two variables, each 

with only a few categories, is not difficult.   Simply follow these steps: 

A. Calculate the percentage of cases in the sample within the categories you want 

to adjust.  For example, we could use the percentage of respondents in each 

cell of the cross-tabulation of race by gender.  The percentages must add up to 

100%.   Be sure to use the weight for differential selection probabilities and 

non-response when generating those percentages
8
, and use at least a few 

decimal places.  Also, you should have at least about 20 cases in each cell; 

otherwise, use fewer categories.   

B. Find the corresponding percentages of the population in those same 

categories, from Census data or some other criterion source.  These too must 

add up to 100%. 

C. For each category in the distribution, divide its population percentage (B) by 

its sample percentage (A).  This ratio is the post-stratification adjustment 

factor that applies to all cases in that category.   For example, making the 

gender distribution for the sample match the Census distribution could require 

adjustment factors like 1.1234 for males and 0.8902 for females.  This would 

                                                 
7
 See Frankel (this volume) on adjusting for several variables by a process called “iterative marginal 

weighting,” often referred to as “raking.” 
8
 If it is not necessary to weight for differential probabilities of selection and/or non-response, then such 

weights are effectively 1.0 for each case, and the unweighted percentages can be used for this step. 
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have the effect of increasing the weighted number of males in the sample, and 

decreasing the weighted number of females.       

D. Finally, produce a new weight for each case, i, by multiplying the previous 

weight variable by the post-stratification adjustment appropriate to that case:   

 post-stratification weightghi  =  post-stratification adjustmenti * weightghi 

 

Since the post-stratification weight includes all the adjustments incorporated into the 

previous weight variable, it would usually be used as the primary weight variable when 

analyzing the data. 
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 Figure 5.1    

      

      

 Simple Random Sampling From a List 
      

      

 Want to select 2 out of 10 elements   

      

 Generate a few random numbers between 1 and 10: 

  8     

  4    

  7    

  6    

  6    

      

 List of elements Selected?   

      

 Element 1     

 Element 2     

 Element 3     

 Element 4  Yes   

 Element 5     

 Element 6     

 Element 7     

 Element 8  Yes   

 Element 9     

 Element 10     

      

      

 

Formula (in Excel) for generating a random 
number between 1 and 10:   
  

      =INT(RAND()*(10-1) + 1)   
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 Figure 5.2   

      

      

Systematic Random Sampling 

with a Fractional Selection Interval 
      

      

 Number on the list: 10    

 Number to select: 4    

 Selection interval 2.5    

 Random start: 1.5    

      

 
Selection series: 

With 
fractions 

Truncated 
  

      

  1.5 1   

  4.0 4   

  6.5 6   

  9.0 9   

      (beyond end of list:)        11.5 11   
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Figure 5.3 
 

Systematic Selection with Probability Proportional to Size 
 
 

Total of size measures: 40 
Number to select: 3   
Selection interval: 13.3 
Random start: 5.5 
 
Selection series: 5.5, 18.8, 32.1  
Truncated: 5, 18, 32 
Method: Fractional interval with truncation 

 
 

Elements Measure Cumulative Selection Selected? 
 of Size MOS   Range 

 
 

  1 5  5  1- 5 5 
  2 2  7  6-7 
  3 1  8     8 
  4 3 11  9-11 
  5 7 18 12-18 18 
  6 6 24 19-24 
  7 2 26 25-26 
  8 5 31 27-31 
  9 6 37 32-37 32 
 10 3 40 38-40 
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 Figure 5.4   

       

       

Stratification 
       

   

Proportionate 
sampling 

Disproportionate 
Sampling   

 
STRATIFIED 
FRAME     

       

 Region 1 (large)     

  School 1     

  School 2     

  School 3 f = 10% f = 5%   

  …     

  School 1000     

       

 Region 2  (small)     

  School 1     

  School 2     

  School 3 f = 10% f = 15%   

  …     

  School 300     

       

 Region 3  (medium)     

  School 1     

  School 2     

  School 3 f = 10% f = 10%   

  …     

  School 500     
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 Figure 5.5   

       

       

Cluster Sampling 
       

    Selected?   

 ELEMENTS WITHIN CLUSTERS    

       

 School 1  Yes   

  Student 1     

  Student 2     

  Student 3     

  …     

  Student 190     

       

 School 2  No   

  Student 1     

  Student 2     

  Student 3     

  …     

  Student 215     

       

  School 3  Yes   

  Student 1     

  Student 2     

  Student 3     

  …     

  Student 350     

       

 School 4  No   

  Student 1     

  Student 2     

  Student 3     

  …     

  Student 220     

 



42 

 

 

 Table 5.1  

         

 Optimum Cluster Size  

         

         

  Roh  

         

  0.01 0.02 0.05 0.10 0.15 0.20  

 Relative Cost       

 1 10 7 4 3 2 2  

 2 14 10 6 4 3 3  

 3 17 12 8 5 4 3  

 4 20 14 9 6 5 4  

 5 22 16 10 7 5 4  

 6 24 17 11 7 6 5  

 7 26 19 12 8 6 5  

 8 28 20 12 8 7 6  

 9 30 21 13 9 7 6  

 10 31 22 14 9 8 6  

 11 33 23 14 10 8 7  

 12 34 24 15 10 8 7  

 13 36 25 16 11 9 7  

 14 37 26 16 11 9 7  

 15 39 27 17 12 9 8  

         

 20 44 31 19 13 11 9  

 50 70 49 31 21 17 14  

 100 99 70 44 30 24 20  

 500 222 157 97 67 53 45  

 1000 315 221 138 95 75 63  

 1500 385 271 169 116 92 77  

         

         

         

 For example:  If roh is .05 and the relative cost is 10,  the optimal cluster size is 14. 

         

 Simple cost model:  Total Cost = a * (cost per cluster)  +  n * (cost per case)  

  where a = number of clusters, and n = number of interviews or cases 

         

 Relative cost = (cost per cluster) / (cost per case)    

         

 Optimal cluster size = sqrt( (relative cost)  *  (1 - roh)/roh) 

         

 See Kish, 1965, equation 8.3.7, p. 269.  
 

 


